

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

19

Securing J2EE SOA Enterprise Applications

with a Pattern-Based Approach

Antonio Navarro, W. Eduardo Parra, Eduardo Romero, Sergio Martín, Rodrigo de Miguel

Dpto. Ingeniería del Software e Inteligencia Artificial, Universidad Complutense de Madrid,

C/ Profesor José García Santesmases, 9, 28040 Madrid, Spain

{anama, willparra, eduarrom, semart12, rodrimig}@ucm.es

ABSTRACT

Security is a key issue in SOA J2EE applications. The literature and a considerable number of frameworks address

security issues for this type of enterprise application. However, there are two significant problems in this body of

knowledge: (i) it is hard to find an architectural approach for dealing with security threats to SOA J2EE

applications; and, (ii) technologies are constantly changing, making it is difficult to have an abstract view of the

problems that are solved using specific technologies. The Core Security Patterns (CSP) catalogue solves both

problems because it provides a comprehensive architectural solution to J2EE security issues and abstracts specific

security technologies into security patterns. However, the CSP pattern catalogue is huge (more than 1,000 pages)

and there are three significant challenges to understanding it completely: (i) the integration of the CSP security

patterns and the Core J2EE Patterns (CJP) for the software architecture of SOA J2EE applications is not evident;

(ii) the high abstraction level of the CSP patterns, in some cases, obscures the security problems that the patterns

solve; and (iii) the implementation of the CSP patterns involves the configuration of complex security frameworks,

adding a layer of complexity to securing a J2EE application using a pattern-based approach. To address these

issues, we have developed a SOA multitier application based on the patterns described in the CJP catalogue, and

we have secured it by implementing the patterns described in the CSP catalogue. This paper describes the work

carried out during these developments. The main goal was to relate the CSP patterns with: (i) CJP patterns; (ii)

the security concerns that the CSP patterns address; and (iii) the present security frameworks. As a result of this

paper, we expect the inclusion of security elements in SOA enterprise applications to be easier for software

architects and developers. Finally, four main conclusions can be drawn from our study: (i) security is an

orthogonal aspect for SOA multitier development; (ii) implementation of security patterns relies heavily on

security frameworks, with the configuration of security frameworks thus becoming one of the most complex issues

when securing J2EE SOA multitier applications; (iii) no J2EE application servers are needed to deploy secure

J2EE SOA enterprise applications; and (iv) whether or not applications servers are used, security-related

implementations are closely tied to the application container and frameworks used for SOA implementation.

TYPE OF PAPER AND KEYWORDS

Regular Research Paper: Web Services Security (WS-Security), Security Assertion Markup Language (SAML),

Security Token Service (STS), Java Authentication and Authorization Service (JAAS), JavaServer Faces (JSF),

Java API for XML Web Services (JAX-WS), Java API for RESTful Web Services (JAX-RS), Simple Object Access

Protocol (SOAP), Representational State Transfer (REST)

 Open Access

Open Journal of Web Technologies (OJWT)

Volume 7, Issue 1, 2020

www.ronpub.com/ojwt

ISSN 2199-188X

© 2020 by the authors; licensee RonPub, Lübeck, Germany. This article is an open access article distributed under the terms and conditions

of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

20

1 INTRODUCTION

Enterprise application development [1][26] is a complex

issue that requires being an expert in one of its main

development platforms (e.g. J2EE or MS .NET). These

platforms have frameworks intended for the

implementation of views using a controller and actions,

the publishing of SOAP and REST web services,

transaction management, object-relational mapping, and

database connectivity, among others. In addition, these

frameworks are built and structured around multitier

design patterns [1][26]. They are designed as

independent elements, taking into account the software

architecture's tiers, but they have to work in an

integrated manner according to multitier patterns to

build enterprise applications. A good full stack

developer must, therefore, be familiar with many

frameworks and design patterns.

Although multitier patterns are, to some extent,

independent of enterprise platforms, this paper focusses

on J2EE, which was the platform chosen in the

development of the applications built in our approach.

Security issues are not usually included in the

literature on enterprise application patterns and

frameworks. Thus, in the context of the J2EE platform,

developers can master multitier architecture patterns

[1][26], JavaServer Faces (JSF) [28], the Java API for

XML Web Services (JAX-WS) [32], the Java API for

RESTful Web Services (JAX-RS) [15], the Java

Persistence API (JPA) [39], the Java Transaction API

(JTA) [43] and Java Database Connectivity (JDBC)

[25], but they may not know anything about security

because it is not usually covered in the programing

references for each framework or pattern catalogue.

Pattern-based design has the advantage of

abstracting design problems by isolating them from

concrete technologies [27]. Therefore, when including

security issues in SOA multitier applications, a pattern-

based approach would be desirable [24][71]. The Core

Security Patterns (CSP) catalogue [71] is a complete and

detailed work but is a complex book with more than

1,000 pages.

The CSP catalogue defines twenty-two patterns

grouped into five categories: web tier, business tier,

web-services, securing identity, and secure service

provisioning. This is a major problem because the Core

J2EE Design Patterns (CJP) catalogue [1], the most

closely related catalogue to the CSP, groups its patterns

into three tiers: presentation, business and integration. It

is thus not obvious how to relate the CSP and CJP

patterns because there is a significant mismatch between

the classification schemata used in both catalogues.

Another problem with the CSP catalogue is, to some

extent, a problem common to software design patterns

catalogues: the abstraction and complexity of the

patterns, in some cases, obscures the main problem that

the patterns solve. This problem is amplified in the CSP

catalogue because its vocabulary is not aligned with the

security concerns presented in most J2EE security

literature and frameworks.

Finally, security software is very difficult to

implement because it involves high-level issues such as

encryption algorithms and low-level issues such as bit

transmission over networks. Therefore, in enterprise

applications security software is not built from scratch,

but based on security frameworks. Thus, one of the most

complex issues in the implementation of security

patterns is the configuration of these frameworks.

To address these questions, this paper analyzes the

patterns included in the CSP catalogue from a practical

point of view, driven by the security problems that must

be addressed when securing SOA enterprise

applications. This analysis also takes into account the

current security-related J2EE frameworks and

technologies needed for implementing the CSP patterns

as well as the Core J2EE multitier patterns that are more

closely linked to CSP patterns.

The work presented in this paper is based on two

final degree projects developed in two consecutive

academic years, 2017/18-2018/19 [48][50], which were

preceded by a more theoretical final master’s project

[62]. The first final degree project developed a SOA

multitier application that only had user

authentication/authorization and invocation of web

services using a username and password through

HTTPS. The second project enhanced the first by

including most of the security patterns described in the

Figure 1: Business delegate (EmployeeBD and

EmployeeBDImp), transfer (EmployeeTO) and

JAX-WS classes in the WSC for the SOAP

invocation of the WSP for employee creation.

EmployeeWSB is the interface for the JAX-WS

proxy for remote access to the web service

broker deployed in the WSP

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

21

CSP pattern catalogue provided by Steel, Nagappan and

Lai [71]. As a consequence of this approach, this study

demonstrates that, if multitier architecture patterns are

properly applied, security is an orthogonal aspect of

SOA multitier development.

This paper has the following sections: Section 2

presents related work; Section 3 describes the

architecture of the base SOA application; Section 4

describes the main security concerns that CSP patterns

solve and how these patterns have been included in the

base SOA application described in Section 3; Section 5

analyses the work and evaluations carried out; finally,

Section 6 presents conclusions and future work.

2 RELATED WORK

This paper focusses on the J2EE platform. Therefore,

security frameworks outside this platform have not been

considered. However, this section also includes an

analysis of security patterns that are independent of

J2EE.

We have not found specific literature about securing

J2EE applications beyond Buege et al. [14], Kumar [41]

and Pistoia et al. [65]. Buege et al. focus on the different

attacks that J2EE applications can be subject to and how

J2EE security-related technologies can prevent them.

Kumar and Pistoia et al. follow a more traditional

approach, where J2EE security-related technologies are

presented, as well as the security threats they prevent.

These are good books focusing on J2EE security

fundamentals (e.g. Java Security Architecture, class

loaders, cryptography, etc.), HTTPS, securing RMI

calls, XML security-related standards, securing EJB 2.x

objects, and securing JAX-RPC web services. However,

these books do not consider a base SOA multitier

application and present the Java security technologies as

technological elements that are added on. In addition,

they do not follow a pattern-based approach to describe

the SOA architecture of the underlying application or the

security elements included in it. It is thus difficult to

relate J2EE security technologies to multitier elements

such as application services. They also fail to provide

UML diagrams to give an abstract vision of the secure

application. Finally, although some technologies

presented in these books are still used, the lack of

abstraction of the security principles in terms of security

patterns makes them seem outdated (e.g. all the SOA

security technologies are related to the overridden JAX-

RPC web services framework).

In contrast, books that abstract security principles in

terms of design patterns are more isolated from specific

technologies and their changes over time. In this

category of books, we have only found Core Security

Patterns (CSP) [71] and Security Patterns in Practice

(SPE) [24]. CSP considers five groups of patterns: web

tier, business tier, web services, identity and service

provisioning patterns. Although this book provides very

interesting patterns, the way they are grouped makes

their application difficult for multitier development,

which uses three tiers (presentation, business and

integration). In addition, the security patterns are not

presented in terms of multitier patterns, making their

implementation complex in a SOA multitier

architecture. SPE is a complete catalogue of security

patterns. This catalogue does not pay the same attention

to basic security issues and directly defines the pattern

catalogue. In addition, this catalogue considers some

types of pattern that are not considered in CSP, such as

those devoted to secure process management, secure

execution and file management, secure operating system

architecture and administration, or cloud computing.

Therefore, this catalogue has less in common with the

SOA multitier architecture than CSP.

Alvi & Zulkernine [2] make a comparative study of

software security pattern classifications, but they stress

classification schemes instead of the use of patterns in

software architectures.

Anand et al. [3] provide a comprehensive

classification of security patterns according to the type

of vulnerability they address. However, the paper does

not focus on the practical application of these patterns to

software architectures.

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

22

Cervantes et al. [19] agree on the importance of

security patterns for securing enterprise software, but

the paper focuses on analyzing security approaches in

industrial and open-source projects and not on security

patterns.

Hafiz et al. [29] is an interesting study relating

several security patterns belonging to different

catalogues. The key element of the paper is a diagram

that depicts the relationships established between

different patterns. However, these security patterns are

not related to architectural patterns, and their inclusion

in SOA multitier applications is thus not described.

Halkidis et al. [30] conduct an analysis of security

patterns applied to a concrete use case focused on

shopping processes. Although well described for this

use case, the paper does not provide further examples for

other design layers or for SOA architecture.

Mythily et al. [52] provide a method for including

security elements in enterprise software that is designed

in terms of activity diagrams. Although very useful, the

method is restricted to designs made in terms of activity

diagrams and it does not include design patterns.

Ryoo et al. [66] provide an architectural analysis

method based on three techniques for analyzing

security. The paper has an interesting section discussing

related research in architectural analysis of security

methods, but the whole paper is too abstract because it

places its emphasis on analysis rather than on design.

Yoshioka et al. [75] do an extensive survey of

security patterns, but the paper focusses on the

classification of these patterns and does not provide

detailed guidelines for their inclusion in software

applications.

There are also catalogues on design patterns that do

not focus on security issues such as:

 Design Patterns: Elements of Reusable Object-

Oriented Software written by Gang of Four [27].

This is the seminal work on design patterns. With a

focus on common patterns found in object-oriented

frameworks, it does not provide either architectural

or security patterns.

 Core J2EE Patterns: Best Practices and Design

Strategies [1] and Patterns of Enterprise

Application Architecture [26] present the key

patterns for multitier architecture. The Alur et al.

catalogue [1] is more orthodox, but Fowler [26]

provides key information about concurrency

management. In any case, neither emphasizes

security issues. J2EE Design Patterns [21] presents

similar patterns to those identified by Alur et al. [1].

 SOA Design Patterns [23] provides descriptive

patterns for SOA software but also avoids security

concerns.

 Wiley’s series on Pattern-Oriented Software

Architecture [16][17][18][40][68] includes five

volumes that consider patterns similar to those

defined in the above-mentioned pattern catalogues

and two volumes specifically focusing on pattern

languages. However, no special emphasis is put on

security in this series.

Considering the above, additional work is needed to

relate CSP security patterns, current J2EE security

technologies and SOA multitier architectural patterns to

make it easier to secure J2EE SOA applications.

It is well worth mentioning that this work cannot be

understood without mastering multitier patterns and, in

particular, business delegate and web service broker

patterns [1], which are two of the most advanced

patterns in this architecture. It is beyond the scope of this

Figure 3: Configuration in the JAX-WS WSC business delegate for accessing the SOAP WSP. In this

example. target_namespace= http://wsb.employee.business, service_name= EmployeeWSBService,

wsdl_location= http://solaris.fdi.ucm.es:8080/csp/wsdl/employeewsb.wsdl, and
service_interface= business.employee.imp.EmployeeWSB.class

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

23

paper to explain multitier and SOA architectures, but

Navarro et al. [54] and Huertas & Navarro [33] are

interesting references for both architectures that share

the vocabulary and style used in this paper. Additionally,

a command of JAX-WS and JAX-RS, the J2EE

frameworks for managing SOA and REST web services,

is also necessary to understand this paper.

Finally, securing J2EE applications involves some

technologies that should be mentioned before

continuing:

 The X.509 standard for public key certificates [35]

and the Java keytool command used to manage

the keystore, a database of keys and certificates

[60].

 Security Assertion Markup Language (SAML) [57]

is an XML-based language that allows encoding

authentication and authorization information.

 eXtensible Access Control Markup Language

(XACML) [58] is an XML-based language that

allows encoding information about access control

policies in a declarative manner.

 Web Services Security (WS-Security) [56] is an

extension to SOAP that allows programmers to

sign, encrypt and attach security tokens to SOAP

messages.

 Regarding web services, [59] is a very good

reference for understanding web service security

concepts.

3. SOA BASE APPLICATION

Our work starts from a simple base SOA multitier

application focused on the management of departments,

employees and projects. Although this application

includes almost all the patterns of the Alur et al.

catalogue [1], in this paper we only focus on those

necessary for applying security patterns. This

application considers a web service client (WSC) with a

JSF presentation tier connected to a business tier that

consumes JAX-WS SOAP and JAX-RS REST web

services. The web service provider (WSP) provides

JAX-WS services for the management of employees and

projects and JAX-RS services for the management of

departments. Persistence, including transaction

management, relies on JPA. Web services expose

information using transfers instead of JPA entities.

There are two reasons for this: (i) JPA entities contain

cycles that cannot be marshalled unless MOXy [22] is

used; and (ii) MOXy provides incomplete information

with regard to the domain (i.e. a department can be

obtained mutually linked with its employees, but if an

employee is obtained, it is mutually linked to its

department, which ignores its other employees).

Figure 5: Access to the REST WSP in the JAX-RS business delegate using the JAX-RS classes for

remote REST access. In this example, service_url = http://solaris.fdi.ucm.es:8080/csp/services/
department/wsb

Figure 4: Access to the SOAP WSP in the JAX-

WS business delegate using the JAX-WS proxy

that implements the interface EmployeeWSB

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

24

For the sake of conciseness, in this paper, we shall

consider only two use cases of this application: the

creation of an employee (which involves a JAX-WS web

service) and the reading of a department (which involves

a JAX-RS web service)1. Several operations, including

create/read/update/delete operations for the

management of all entities are implemented in the

application.

Figures 1 and 2 depict the business tier of the WSC

for the employee and department management. Business

delegates and transfers are used according to a multitier

architecture, as Huertas & Navarro describe [33]:

business delegates represent remote services in client

applications while hiding the connection details, and

transfers provide object-oriented representation of data

for their transfer between layers. The EmployeeBD

and EmployeeBDImp classes depicted in Figure 1 are

the SOAP business delegate for employee management.

The DepartmentBD and DepartmentBDImp

classes depicted in Figure 2 are the REST business

delegate for department management.

Figure 3 describes the creation of the business

delegate EmployeeBDImp class. This class

implements (extends) the abstract class of the singleton

(EmployeeBD) and configures the JAX-WS proxy

Service for accessing the SOAP WSP as Hansen details

[32].

Figure 4 describes the invocation of the WSP via the

JAX-WS proxy made by the business delegate.

Figure 5 describes how the business delegate

DepartmentBDImp (class that implements/extends

DepartmentBD) uses the JAX-RS classes for

invoking the REST WSP as Burke details [15].

Figures 6 and 7 describe the business tier of the WSP

for the employee and department management. Web

service brokers (WSBs), application services and

transfers are used according to multitier architecture, as

Huertas & Navarro [33] describe. WSBs publishes the

services using SOAP or REST strategies and application

services implement the business rules specified in the

requirements. The EmployeeWSB class depicted in

Figure 6 is the WSB for employee management. The

interface EmployeeWSB stereotyped with

@WebService in Figure 1 is the JAX-WS interface

used in the WSC for characterizing the JAX-WS proxy

for remote access to the EmployeeWSB class deployed

in the WSP [32]. For the sake of conciseness, these JAX-

1 WSC code from the base application can be found

here https://github.com/hunzaGit/

TFG_cliente and WSP code from the base

WS interfaces used in SOAP WSC business delegates

are omitted from the deployment diagrams, such as in

Figure 8.

Finally, Figure 8 depicts the deployment diagram for

both, WSC and WSP. Windows 10 Pro 64, JRE 1.8.11,

and Apache CXF 3.2.0 [4] are the main elements

depicted. Other execution environments and

components, such those related to the database

management, have not been included for the sake of

conciseness.

application can be found here
https://github.com/hunzaGit/TFG_server

Figure 6: Web service broker (EmployeeWSB),

application service interface (EmployeeAS),

transfer (EmployeeTO) and JAX-WS classes in the

WSP for the SOAP implementation of the web

service for employee creation

Figure 7: Web service broker (DepartmentWSB),

application service (DepartmentAS), transfer

(DepartmentTO) and JAX-RS classes in the WSP

for the REST implementation of the web service

for reading a department

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

25

4. RATIONALE FOR USE OF CSP SECURITY

PATTERNS IN THE CONTEXT OF A SOA J2EE

APPLICATION

This section aims to explain the use of CSP patterns in

combination with CJP patterns, taking into account the

security requirements that need to be addressed, and the

current J2EE security frameworks. To this extent, we

enhance the architecture of the base SOA application

described in Section 3 with CSP security patterns that

implement different security requirements2.

As previously mentioned, the configuration of

security frameworks is one of the most complex issues

when implementing security patterns. Therefore, in this

section many deployment diagrams describing the

classes and artefacts deployed are provided, including

only the key elements for each pattern in each case. We

have provided deployment diagrams because, in our

opinion, when frameworks configurable by text files are

used, deployment diagrams are the best choice for

2 WSC code from the secured application can be found

here https://github.com/sergiomgm/TFG_

cliente and WSP code from the secured

defining these configuration files as well as the libraries

used. Certainly, UML class and interaction diagrams are

the best way to characterize the use of these frameworks,

but this is beyond the scope of this paper and can be

found in the references provided throughout. Thus, class

and interaction diagrams are only included in this paper

when they are strictly necessary to understand the

implementation of CSP patterns.

4.1 Authentication and Authorization in the

WSC Application: CSP Authentication and

CSP Authorization Enforcer

According to the CSP catalogue [71]:

 Authentication enforcer creates centralized

authentication enforcement that performs

authentication of users and encapsulates the details

of the authentication mechanisms.

application can be found here
https://github.com/sergiomgm/TFG_servidor

Figure 8: Deployment for WSC and WSP. Services for employee and project management are published

as JAX-WS SOAP web services (EmployeeWSB and ProjectWSB) and services for department

management are published as JAX-RS REST web services (DepartmentWSB)

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

26

 Authorization enforcer creates an access controller

that performs authorization checks using standard

Java security API classes.

This section explains how to use them to perform

authentication and authorization in the WSC.
WSCs are usually web applications with some type

of web graphical user interface in the presentation tier.

Thus, users interact with the WSC using a browser. It is

very common to have some type of access control to

parts of the WSC application by providing a username

and password (e.g. customer accounts). Two aspects

must be checked to grant user access: (i) to check the

authenticity of the users, i.e., authentication; and (ii) to

check that the authenticated user has access to the

requested resource, i.e. authorization. The components

that deal with authentication and authorization in the

CSP catalogue are named authentication and

authorization enforcer respectively.

Java Authentication and Authorization Service

(JAAS), is the J2EE framework that deals with user

authentication and authorization in J2EE applications

[61]. The use of JAAS with Tomcat is explained by

Marques [45][46][47].

To use JAAS, programmers have to provide user,

role and password Principals and a LoginModule that

creates and validates them as Figure 9 depicts. A

principal is an entity that is granted security rights [14].

Tomcat automatically calls a predefined login form

(loginForm.xhtml in Figure 9) to enforce user

authentication and validation when a protected page is

requested and no user and role principals are present.

After user and password are provided in this form,

Tomcat calls the implementation of the

LoginModule, which validates users, for example,

using a relational database (table wscUsers in Figure

9).

Deployment of JAAS enforcers are a bit

cumbersome and, in addition to the code provided (user

and role principals and login module) several files have

to be modified and/or provided:

 The application’s roles and access rights to web

pages have to be defined in the application’s

web.xml file.

 A file (e.g. jaas.config) has to be provided to

tell Tomcat the available login modules.

 The bound of specific applications to concrete user,

role and password principals is made in Tomcat’s

server.xml file, or in a Tomcat’s context file

(e.g. context.xml).

Figure 9 gathers all the elements needed to make

JAAS work. It is well worth noting the web of

dependences between the components that JAAS needs

Figure 9: JAAS deployment in the WSC

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

27

for it to be used, which can be a bit annoying when

dealing with them for the first time.

The application developed uses traditional

authentication based on username/password, but JAAS

also supports biometric authentication as [53] depicts.

4.2 HTTPS Connections: CSP Secure Pipe

According to the CSP catalogue, secure pipe guarantees

the integrity and privacy of data sent over the wire [71].

This section explains how to use it to establish

HTTPS connections.
A common security problem in enterprise

applications is unauthorized access to information sent

3 It is explained better in the first edition than in the

second edition.

between two points, the so-called man-in-the-middle

(MITM) attack [71]. The most common way to avoid

this problem is to encrypt the information sent between

two points. In the context of HTTP connections, this

solution takes the form of HTTP Secure or HTTPS [71].

The CSP catalogue characterizes HTTPS connections as

the secure pipe pattern.

A detailed description of HTTPS is outside the scope

of this paper, but in order to make it work two X.509

certificates are needed: the server’s public key, used to

encrypt the information, and the server’s private key, for

decryption [13].

The mechanism for describing the creation of X.509

certificates, their deployment in keystores, and the

Tomcat configuration to make it work is explained in

[38]3.

The WSP stores its private key in its keystore and the

WSC stores the WSP public key in its own keystore in a

correct configuration. For the sake of simplicity, no

differences between keystore and truststore have been

made in the figure. Using a WSC truststore to store a

WSP public key would have been more accurate [36].

Once certificates have been created and developed,

the web.xml file web of applications needs to be

configured according to [34] to establish SSL

connections. Tomcat also has to be configured to

support these connections via the server.xml file

[34].

Figure 10 depicts a typical deployment for a WSC

accessing a WSP using an HTTPS connection.

Figure 10: Deployment for secure pipe between WSC and WSP

Figure 11. Simplified credential tokenizer for

username tokens

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

28

4.3 Point-to-Point Secure Invocation of WSP:

CSP Secure Pipe, CSP Secure Session

Object, CSP Container-Managed Security

and CSP Credential Tokenizer

According to the CSP catalogue [71]:

 Secure session object abstracts encapsulation of

authentication and authorization credentials that can

be passed across boundaries.

 Container-managed security defines application-

level roles at development time and perform user-

role mappings at deployment time or thereafter.

 Credential tokenizer encapsulates different types of

user credentials as a security token that can be

reused across different security providers.

This section explains how to use them to make point-

to-point secure invocation of WSPs.
Section 4.2 presented CSP secure pipe as the way to

establish HTTPS encrypted channels for web

communication. In the context of web applications,

HTTPS connections are established between browsers

and servers. In the context of SOA applications, HTTPS

have to be established between the WSC and the WSP.

According to the CSP catalogue, four patterns are

needed to establish HTTPS between them:

Figure 12. Configuration in the JAX-WS WSC business delegate for accessing the SOAP WSP using

username and password obtained from a credential tokenizer. In this example, the values of

target_namespace, service_name, wsdl_location, and service_interface coincide with those of Fig. 3

Figure 13: Access to the REST WSP in the JAX-RS business delegate using username and password

obtained from a credential tokenizer. In this example, the value of service_url coincides with that of

Fig. 5

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

29

 Secure pipe: to physically establish the HTTPS

connection.

 Container-managed security: to enforce containers

(e.g. Apache Tomcat) to check that a request

includes username and password. This prevents

users from programming specific code for user

authentication and authorization.

 Credential tokenizer: to encapsulate a security

token in different formats, such as

username/password or X.509.

 Secure session object: to gather username and

password information.

It is worth noting that:

 Secure pipes can be established without usernames

and password. This avoids the problem of MITM

attacks, but anyone with access to the WSP could

invoke it.

 Secure session objects and container-managed

security enforce the authentication/authorization of

the WSC before invoking the WSP, but do not

prevent MITM attacks.

Therefore, the presence of secure pipe and container-

managed security patterns is needed to make point-to-

point secure invocations of WSP. Credential tokenizer is

optional, but in this use case we introduce it as credential

holder. Figure 11 shows the simplified credential

tokenizer used in this project for the management of

username tokens, which contains username and

password.

The inclusion of the username and password in the

JAX-WS WSC is as simple as including them in a map

obtained from the JAX-WS class

javax.xml.ws.BindingProvider. This is the

only change needed in the code, since WSP does not

check them because container-managed security is used.

Thus, the secure session object is implemented as the

map that contains username and password and is

internally managed by Tomcat and JAX-WS (and JAX-

RS also). Figure 12 modifies the interaction of Figure 3

to include username and password (obtained from a

credential tokenizer) in the invocation to the SOAP

WSP.

The inclusion of username and password in the JAX-

RS WSC is a bit more complex, because the JAX-RS

interface javax.ws.rs.client.ClientReques

tFilter has to be implemented with the class

Authenticator to codify this information in the

request as exemplified by Bien [12]. Figure 13 modifies

the interaction of Figure 5 to include username and

password (obtained from a credential tokenizer) in the

invocation of the REST WSP.

Tomcat greatly facilitates the implementation of

container-managed security and the secure session

object. Only the server.xml file has to be modified

to define a Realm that enforces HTTPS connections to

provide username and password. This information can

be checked against different information containers,

such as tables in relational database management

systems as [5] describes (table HTTPSusers in Figure

14).

Figure 14 depicts the components needed for the

implementation of container-managed security, as well

as for a secure pipe.

Figure 14: Deployment for point-to-point secure invocation of WSP. The configuration is valid for both

SOAP and REST services

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

30

4.4 End-to-End Secure Invocation of WSP with

WS-Security: Not Considered in the CSP

Catalogue

Point-to-point security has two major drawbacks: (i) if

intermediate gateways are used, these gateways need

access to the WSP private key; (ii) and, because

encryption is reliant on the transport layer, instead of the

application layer, the application’s security is extremely

dependent on the server’s infrastructure, which the

developers of the application may not control (i.e., the

application can be hosted in external servers).

To overcome both drawbacks, end-to-end security

can be achieved by encrypting the information in the

application layer instead of in the transport layer, as

HTTPS does. To this extent, WS-Security is a SOAP

extension that provides integrity, confidentiality and

identity credentials to SOAP messages, allowing the

encryption and signing of parts of these messages in the

application layer [56].

Although very powerful, WS-Security has two major

drawbacks: (i) it is not available for REST web services;

and (ii) it provokes a significant server overload.

Therefore, the use of point-to-point or end-to-end

security is an issue that has to be carefully analyzed

before taking a decision.

It is worth mentioning that, although the CSP

catalogue presents WS-Security, it does not define a

pattern for it.

WS-Security can be used with or without secure pipe

because SOAP messages (or their confidential elements)

are encrypted by the WSC before sending them to the

WSP (in the example in Figure 15, HTTPS is also used).

The configuration for using WS-Security, regarding

certificates and keystores, is very similar to the

configuration for using secure pipes. However, in the

context of SOA enterprise applications, where

information could be encoded in both directions, we

need to include the WSP public key and the WSC private

key in the WSC keystore. Reciprocally, we need to

include the WSC public key store and the WSP private

key in the WSP keystore.

However, the key question remains unanswered:

how do we encode our SOAP messages using public

keys and decrypt them using private keys? JAX-WS

does not provide any specifics regarding this. Thus, the

encryption of the SOAP messages has to be encoded

using the underlying implementation of JAX-WS. In the

case of Apache CXF, WSS4J interceptors must be used

[6][7][44]. WSS4J Project is the framework that

provides a Java implementation of the primary security

standards in the WS-Security specifications [8].

Figure 15: Deployment for WS-Security

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

31

Programmers only have to write code for WSC and

WSP password callback classes implementing the
javax.security.auth.callback.CallbackHand

ler interface. These callback handlers provide access to

the WSC and WSP private keys used for signing and

decryption. In addition, configuration files (WSC-

crypto.properties and WSP-

crypto.properties) have to be provided, both in the

WSC and in the WSP, for defining keystore location,

password and default alias. Private keys defined in

callback handlers could be included in these

configuration files, but, because text files can be more

easily hacked than Java classes, this is considered a less

secure practice [44].

In addition, CXF has to configure output/input

interceptors in the WSC and input/output interceptors in

the WSP. The WSC uses a configuration file (e.g.

cxf.xml) that defines a conduit (i.e. URL for

accessing WSP) that configures output/input

interceptors for SOAP encryption/decryption [6][44].

Thus, the WSC, the EmployeeBDImp has to obtain its

Java access proxy for accessing the WSP using the

conduit named
https://solaris.fdi.ucm.es:8443/csp/s

ervices/EmployeeWSBPort, which is configured

for providing WS-Security in the WSC using the

cxf.xml configuration file.

The WSP uses a CXF configuration file (cxf-

beans.xml), loaded when Tomcat starts the WSP,

which configures the service endpoint (i.e. the

implementation of the service), with input/output

interceptors for SOAP decryption/encryption [7][44].

Thus, the WSP endpoint, the EmployeeWSB, which

implements the https://solaris.fdi.ucm.

es:8443/csp/services/EmployeeWSBPort,

is configured for providing WS-Security in the WSP

using the cxf-beans.xml configuration file.

Figure 15 depicts the deployment of WSC and WSP

to support WS-Security.

4.5 Avoiding Code Injection Attacks in the

WSC: CSP Intercepting Validator

According to the CSP catalogue, intercepting validator

cleanses and validates data prior to its use within the

application, using dynamically loadable validation logic

[71].

This section explains how to use it to prevent code

injection attacks in the WSC.

As with any web application, WSCs can be subject

to different types of attacks, such as code injection or

denial of service (DoS) [71]. The simplest way to avoid

this is to filter all the incoming requests and try to find a

pattern that could identify an attack. CSP proposes using

intercepting validators for detecting this type of attacks.

Thus, CSP intercepting validators are multitier

intercepting filters [1] used for security purposes.

In practice, CSP intercepting validators are servlet

filter classes [31] that implement

javax.servlet.Filter interface. These filters

are referenced from web.xml file. Figure 16 depicts a

deployment diagram for intercepting validators.

Figure 17: Deployment for MIG and MI in the

WSP. In the figure, Tomcat plays the role of

message interceptor gateway, i.e., Message

Interceptor Gateway is not a class belonging

to any framework

Figure 16: Deployment for intercepting

validators in the WSC

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

32

It is worth noting that intercepting validators can be

used for other purposes than avoiding code injection

attacks. They could perform other security-related tasks

before invoking a service.

4.6 Avoiding Code Injection Attacks in the

WSP: CSP Message Interceptor Gateway

and CSP Message Inspector

According to the CSP catalogue [71]:

 Message interceptor gateway (MIG) is a proxy

infrastructure providing a centralized entry point

that encapsulates access to all target service

endpoints of a web services provider.

 Message inspector (MI) is a modular or pluggable

component that can be integrated with

infrastructure service components that handle pre-

processing and post-processing of incoming and

outgoing SOAP or XML messages.

This section explains how to use them to prevent

code injection attacks in the WSP.

WSPs are web applications and, like WSCs, they can

be subject to code injection or DoS attacks. To prevent

this type of attacks, CSP provides two patterns: MIG and

MI. The MIG is any software or hardware component

responsible for filtering the incoming requests to the

WSP. Once filtered, each connection is passed to one or

several MIs that work as intercepting filters in the WSP.

In this case, servlet filters have not been used

because they did not give access to elements of the

request sent to the WSP [69]. Thus, MIG has been

implemented using Apache Tomcat, and MI has been

implemented as CXF interceptors [9]. Thus, MIs extend

the abstract class org.apache.cxf.phase.

AbstractPhaseInterceptor and are referenced

from the cxf-servlet.xml file belonging to the

WSP [6]. This approach is valid for both JAX-WS and

JAX-RS web services.

Figure 17 depicts the deployment for MIG and MI.

It is worth noting that, as in the case of intercepting

validators, MIG and MI can be used for purposes other

than avoiding code injection attacks. They could

perform other security-related tasks before accessing a

service.

Figure 18: Deployment for secure logger in the context of a secure service proxy. In this case, the WSP

plays the role of client and MySQL Server plays the role of server. This is important in order to understand

the keys deployed in the keystore used by MySQL Server (mysqlKeystore)

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

33

4.7 Logging Every Tier: CSP Secure Logger,

CSP Secure Base Action, CSP Policy

Delegate, CSP Secure Service Proxy, CSP

Audit Interceptor

According to the CSP catalogue [71]:

 Secure logger logs messages in a secure manner so

that they cannot be easily altered or deleted and so

that events cannot be lost.

 Secure base action coordinates security

components and provides web tier components with

a central access point for administering security-

related functionality.

 Policy delegate mediates requests between clients

and security services, reducing the dependency of

client code on the implementation specifics of the

service framework.

 Secure service proxy provides authentication and

authorization externally by intercepting requests for

security checks and then delegating the request to

the appropriate service.

 Audit interceptor centralizes auditing functionality

and defines audit events declaratively,

independently of the business tier services.

This section explains how to use them for logging

every tier in SOA applications.

Knowing who has done what in an enterprise

application is considered important nowadays. The

Enron case showed how important financial information

can be erased, making it impossible to know both who

did it and what the information was. To avoid these

problems, for companies listed on the stock exchange,

the Sarbanes-Oxley Act mandates that every user action

in the system be logged for accounting applications [51].

To that extent, CSP catalogue provides a secure

logger that uses a secure pipe to log the application’s

behavior against some register, such as a table in a

relational database. The process for establishing SSL

connections between MySQL Server and its clients is

very similar to the one used for making WS-Security

work and is defined in [20]. The MySQL configuration

file my.cnf references public and private keys

belonging to the client and server, which are deployed

in a keystore.

It is important to note that, in a SOA application, a

user request goes through several tiers and components.

Therefore, the CSP catalogue defines several patterns

for logging (or doing other security processing) in each

tier:

 For the presentation tier of the WSC a secure base

action is defined.

 For the business tier of the WSC a policy delegate

is defined.

 For the business tier of the WSP a secure service

proxy is defined for logging the proxy that gives

Figure 19: Deployment for dynamic server management of the WSP. In the figure, the class

DepartmentControl is the control object used for taking account of the creation and deletion of

departments

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

34

access to the application service, and an audit

interceptor is defined for logging the application

service. Audit interceptor is intended for those

applications where no web services are present,

because, otherwise, conducting loggings in the

secure service proxy and the audit interceptor could

be redundant.

Regarding implementation technologies, if JSF is

used in the WSC’s presentation tier, managed beans

[28] are the closest to actions, and should thus be

responsible for implementing secure base actions.

Policy delegates are simple business delegates entrusted

with additional security functions such as logging.

Secure service proxies are web service brokers that

implement security functions. Finally, audit interceptors

are simple proxies [27] that create logs before accessing

an application service.

Figure 18 depicts the use of a secure logger in the

context of a secure service proxy (the EmployeeWSB)

that makes logs using a secure pipe against the MySQL

table wspLogs. The MySQL server is deployed in the

same node but could be deployed in a different one. A

simple logger class can be programmed, or more

advanced loggers such those provided in Java Logging

API [72] or Apache Log4j 2 [10] can be used.

Deployment of loggers for secure base actions, policy

delegates and audit interceptors are equivalent to the one

depicted in Figure 18.

It is worth noting that, similar to the intercepting

validators, secure base action, policy delegate, secure

service proxy, and audit interceptor can be used for

different purposes other than logging, but taking into

account the coordinated use of different patterns in the

application developed, logging is the most reasonable

use for them.

4.8 Controlling Objects Deployed in the Server:

CSP Secure Pipe and CSP Dynamic Service

Management

According to the CSP catalogue, dynamic service

management enables fine-grained instrumentation of

business objects at runtime on an as-needed basis using

JMX [71].

This section explains how to use it for controlling

objects deployed in the server.

J2EE provides Java Management Extension (JMX)

[64] a mechanism for the remote control from the classes

deployed in a JVM. This can be useful for accounting

and reporting the classes deployed in the WSP. JMX is

Figure 20: The SMR (SMR and SMRImp) uses a SSO delegator (SSODelegator and SSODelegatorImp)

for password synchronization. The SSO delegator has two JAX-WS interfaces

(PasswordChangePlatform1WSB and PasswordChangePlatform2WSB) whose implementations

give remote access to the WSPs. A Logger is used for manual transaction compensation

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

35

characterized in CSP as the dynamic service

management pattern.

The use of JMX is quite straightforward. Control

objects that audit the desired behavior (e.g. the creation

or deletion of a department) are created and then

referenced with a specific name using

javax.management.MBeanServer class. These

control classes can then be remotely accessed using the

jconsole.exe application included in the standard

JDK.

Certainly, SSL connections and, at least,

username/password access must be granted. This forces

the presence of the WSP private key in the WSP key

store and the WSP public key in the monitoring remote

application keystore, as well as the presence of a file

jmxremote.password in the WSP defining the

roles and passwords [62].

Figure 19 depicts the deployment for dynamic

service management.

4.9 Secure Invocation of WSP Using SSO +

Password Synchronization: CSP Secure

Pipe, CSP Secure Message Router, CSP

SSO Delegator, CSP Assertion Builder, CSP

Password Synchronizer

According to the CSP catalogue [71]:

 Secure Message Router (SMR) establishes a

security intermediary infrastructure that aggregates

access to multiple application endpoints in a

workflow or among partners participating in a web-

services transaction.

 Single Sign-On delegator (SSO delegator)

encapsulates access to identity management and

single sign-on functionalities, allowing the

independent evolution of loosely coupled identity

management services while providing system

availability.

Figure 21: Interaction between SMRImp and SSODelegator for password synchronization

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

36

 Assertion builder abstracts similar processing

control logic to create SAML assertion statements.

 Password synchronizer centralizes management of

synchronizing user credentials across different

application systems via programmatic interfaces.

This section explains how to use them to make

secure invocations of WSPs using Single Sign-On

(SSO). We have used the case of password

synchronization as an example of WSP.

Secure invocation of WSPs using SSO is the most

complex issue addressed by the CSP catalogue, because

it involves three patterns. The two most important are

SMR and SSO delegator. SMR is a class responsible for

secure communications with different WSPs in a

federated environment. SSO delegator is a class

responsible for hiding the process of invoking

heterogeneous WSPs (e.g. SOAP and REST) as well as

the identity management process. Assertion builder is

used for building the SAML assertions used during the

single sign-on.

Thus, SMR is responsible for the choreography of

several WSPs, which are invoked in a federated

environment using an SSO delegator. This SSO

delegator uses SAML assertions for credential

management during WSP invocation.

The implementation of SMR made the creation of a

new use case necessary in the application: the password

synchronization in different applications. Thus, the

SMR was used to implement the password synchronizer

pattern. For the sake of simplicity, Service Provisioning

Markup Language [55] was not used in our

implementation. Of course, SMR does not involve the

presence of a password synchronizer, but we thought

that this was a suitable use case that could mix both the

SMR and the password synchronizer.

The main problem with the SMR is that the

information contained in the CSP catalogue about

Liberty-enabled identity providers [71] is very

misleading because identity providers are suitable for

web applications, where humans interact with web

pages, but are not well tailored for web services. The

translation of all of this to the web services world is

called Security Token Service (STS) [67][70], and in the

context of Apache CXF, Talend’s STS is the key

element [49][73]. STSs validate username/password

sent by WSCs (the SMR in our case) and include SAML

tokens in WSC requests sent to the WSPs. WSPs then

use these SAML tokens to accept or deny the request.

WSPs can follow three different strategies for the

validation of the SAML tokens, i.e., for the subject

confirmation: holder of key, bearer and sender vouches

[42][74].

Holder of key is used in our application. According

to this strategy [37][49]: (i) WSC signs (or includes

username/password) and sends a request for validating

itself against the STS; (ii) STS validates the WSC sign

using the WSC public key (or username/password),

generates an SAML token with the WSC public key and

signs it; (iii) the WSC gets the SAML token, generates

a SOAP message, and signs it; (iv) WSP gets the SAML

token, validates the STS signature of the SAML token

using the STS public key, gets the WSC public key from

the SAML token and validates the WSC signature of the

SOAP message using the WSC public key included in

the SAML token. Thus, WSP trusts the SOAP message,

because it is signed by the WSC, and trusts the WSC

because it is included in the SAML assertion signed by

the STS. Finally, the WSP trusts the STS precisely

because it is the component entrusted with user

authentication. Although not explicitly mentioned,

signatures are made using the private keywords of each

signer [71].

This approach makes it unnecessary for

heterogeneous WSPs (e.g. a WSP for hotel booking and

a WSP for flight purchase) working in a federated

environment (e.g. a WSC for travel planning) to handle

the validation of the WSCs. WSPs trust the STS, and,

therefore, the STS is responsible for deploying the WSC

public keys in its keystore (or other validation

approaches) for the validation of WSCs.

Note that STS is about user credentials and is

orthogonal to the use of secure pipes or WS-Security for

avoiding MITM attacks.

In our application, the implemented SMR invokes

two WSPs, which does password synchronizations in

two different platforms. Both WSPs are SOAP services

that expect a SAML ticket with the WSC credentials

signed by the STS. HTTPS connections are established

between the WSC and the STS and WS-Security is used

between the WSC and the WSPs.

Figure 20 depicts the classes involved in the SMR.

Figure 21 depicts how the SMRImp does the password

synchronization between platform 1 and platform 2

using an SSODelegator. Note that no reference to

STS or SAML is made because the entire configuration

is handled using Apache CXF configuration files. No

classes are necessary for assertion builder, because

frameworks build and manage the SAML tokens

without user intervention. [11] shows examples of how

the WSS4J classes manage the SAML assertions,

making the explicit implementation of an assertion

builder unnecessary.

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

37

It is worth noting that this SMR operation would

need a distributed transaction [43]. However, for the

sake of simplicity, we have omitted it, making a log of

the process to make transaction compensation easier, if

necessary. Thus, as Figure 21 depicts, if any process

fails after a WSP invocation via the SSO delegator, at

least a log describing an open transaction that was not

closed is recorded in the logger.

To make our SMR work, the WSC must include a

directive in the cxf.xml to obtain the SAML ticket

from the STS and provide an implementation of
javax.security.auth.callback.Callback

Handler interface that is used to obtain the WSC

private key password. The WSC keystore must contain

its private key, the STS public key, and the WSP public

key [49].

The STS must include a WSDL file defining the

authentication method for the WSC (note that the STS is

itself a WSP) to include modifications in the STS cxf-

servlet.xml file, and of course, to deploy the

Talend’s STS. The STS keystore must contain its private

key and WSP public key [49]. In addition, if the WSC

signs the SOAP messages sent to the STS (as our WSC

does) instead of including username/password, the STS

keystore must also contain the WSC public key.

The WSP must include in its WSDL file the policy

annotations that refer to the STS and define input/output

policies. It must also provide an implementation of the
javax.security.auth.callback.Callback

Handler to return the WSP private key password when

needed by the WSP. The cxf-servlet.xml file

must also be modified. the WSP keystore must contain

its private key and STS public key [49].

Figure 22 depicts the deployment diagram for the

SMR. For the sake of conciseness, only one platform for

password change is depicted, but the second one would

be equivalent to the one depicted.

Although STS has been bound to the SMR in the

previous description, in practice, the SMR delegates the

SSO and WSP invocation in the SSO delegator.

Therefore, the SSO delegator is the class that (in turn,

delegating in Apache CXF) generates the SOAP

requests to both the STS and the WSPs.

4.10 The Rest of the CSP Patterns

Three patterns from the CSP catalogue have not been

implemented in our project, because they were not

necessary, taking into account our security and SOA

multitier requisites [71]:

Figure 22: Deployment for SMR. For the sake of conciseness, only one platform for password change is

depicted

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

38

 Intercepting web agent, used for retrofitting

authentication and authorization in an existing web

application. Our application needs no retrofit

authentication/authorization; therefore, the pattern

was not implemented.

 Obfuscated transfer, used for protecting critical

data within applications and between tiers. The

presence of HTTPS and/or WS-Security made its

use unnecessary.

 Secure service façade, a session façade that deals

with security concerns. Session façades are only

used in the context of EJBs [1], but our application

exposed the logic using web services instead of

EJBs.

5. EVALUATION AND ANALYSIS

The paper’s main goal was to analyze the patterns

included in the CSP from a practical point of view,

driven by the security problems that must be addressed

when securing SOA enterprise applications. This

analysis also sought to take into account the J2EE

technologies needed for implementing the CSP patterns

as well as the multitier patterns more closely related to

CSP patterns. Table 1 summarizes this analysis carried

out in Section 4.

Regarding the integration of CSP and CJP patterns,

multitier architecture is a modular solution for the

development of enterprise applications. Multitier

architecture is mainly service-oriented because the

application service pattern gathers the services provided

by the application. Because the multitier architecture

expects these services to be accessed by remote clients,

it provides three patterns to expose application services

to them [1]: session façade for EJB clients, web service

broker for SOA clients (REST or SOAP), and service

activator for message-driven (or event-driven) clients.

The invocation of these remote-exposed services can be

accomplished with the business delegate pattern. As

Table 1 suggests, the business delegate and web service

broker are the key elements for including security

activities in SOA applications. Of course, other CJP

patterns are needed to secure enterprise applications, but

business delegate and web service broker are the most

commonly used

As we have previously mentioned, the configuration

of security frameworks is one of the most complex

issues during the implementation of CSP security

patterns. Table 1 identifies the security frameworks and

technologies used for securing our SOA application, and

Section 4 provides UML-deploying diagrams that help

to understand the configuration of these frameworks.

Finally, regarding the suitability of CSP patterns to

handle security threats, several tests and validations

were made to the application developed. However,

because security elements are implemented in terms of

security frameworks and technologies, the security

frameworks themselves are primarily responsible for

dealing with security threats. For example, are secure

pipes (HTTPS connections) properly established in our

SOA application? We can guarantee that we have

configured Apache Tomcat to use only HTTPS

connections using specific X.509 certificates. Are these

HTTPS connections safe? Yes, as long as Apache

Tomcat is able to manage HTTPS connections. Have we

filtered HTTP connections to verify that Apache

Tomcat’s HTTPS connections are encrypted? No,

because we trust Apache Tomcat’s HTTPS connections.

It is possible to incorrectly configure security

frameworks, but these frameworks are extremely

cautious. Programmers must pay careful attention

during configuration; otherwise, the frameworks can

generate a myriad of exceptions that will saturate the

application. Special attention has thus been paid to their

configuration. In addition, we have conducted several

security-related tests in our application. JUnit and

manual tests were carried out to validate the application

developed. These tests checked the correctness of the

application and the security elements included in it. The

configuration was the one used by the implemented

application. In detail:

 Authentication/authorization in WSCs. CSP

authentication and authentication enforcers were

implemented using JAAS and Apache Tomcat. We

run tests to make sure that it was impossible to

access web pages or servlet classes without JAAS-

defined credentials. Therefore, authentication and

authorization were enforced in our application

using properly configured JAAS, as the testing

confirmed.

 HTTPS connections. CSP secure pipe was

implemented using the Apache Tomcat option for

using only HTTPS connections for SOAP and

REST WSBs, as well as all of the configuration

steps described in Section 4.2. We can be sure that

these connections were established because Tomcat

refused connections without the server’s public key,

used to encrypt the information, and the server’s

private key, used to decrypt the information. These

keys are not needed for regular HTTP connections.

Therefore, HTTPS connections were established in

our application using properly configured Apache

Tomcat and X.509 certificates, as we confirmed

with testing.

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

39

Table 1: Security concerns addressed, CSP security patterns, implementing frameworks/technologies and

related CJP multitier patterns
Security concern CSP security patterns Frameworks/Technologies CJP multitier patterns

Authentication/authorization in

WSC application

Authentication and

authorization enforcer
JAAS, Tomcat -

HTTPS connections Secure pipe
X.509 certificates, Apache

Tomcat
-

Point-to-point secure service

invocation of WSP

Secure pipe, secure session

object, container-managed
security, credential tokenizer

X.509 certificates, Apache

Tomcat, Apache CXF, JAX-
WS, JAX-RS

Business delegate, web service

broker

End-to-end secure service

invocation of WSP
-

WS-Security, X.509 certificates,

Apache Tomcat, Apache CXF,
JAX-WS

Business delegate, web service

broker

Code injection in WSC Intercepting validator Apache Tomcat Intercepting filter

Code injection in WSP
Message interceptor gateway,

message inspector
Apache Tomcat, Apache CXF -

Logging every tier:

Presentation - WSC
Secure base action, secure

logger
JSF, MySQL, X.509 certificates Front/application controller

Business - WSC Policy delegate, secure logger
Apache CXF, MySQL, X.509
certificates

Business delegate

Business - WSP -

web service

Secure service proxy, secure

logger

Apache CXF, MySQL, X.509

certificates
Web service broker

Business - WSP -
application service

Audit interceptor, secure logger MySQL, X.509 certificates Application service

Controlling objects deployed in

the server

Secure pipe, dynamic service

management

X.509 certificates, Apache

Tomcat, JMX
-

Secure invocation of WSP using

SSO

Secure pipe, secure message

router, SSO delegator, assertion
builder

WS-Security, X.509 certificates,
Apache Tomcat, Apache CXF,

Talend’s STS, JAX-WS, JAX-

RS

Business delegate, web service

broker

Password synchronizing in
several platforms

Password synchronizer, secure
pipe

X.509 certificates, Apache

Tomcat, Apache CXF, JAX-

WS, JAX-RS

Business delegate, web service

broker, distributed transaction

management

Retrofitting authentication and
authorization in an existing web

application

Intercepting web agent - Front controller

Protecting critical data within
application and between tiers

Obfuscated transfer - Transfer object

Security concerns in session

façades
Secure service façade Session EJB Session façade

 Point-to-point secure invocation of WSPs. CSP

secure pipe, CSP secure session object, CSP

container-managed security and CSP credential

tokenizer have to be implemented to address this

security threat. Secure session object is an inner

class used to manage security information and has

no direct influence on the implementation of the

point-to-point secure invocation; it only helps to

manage information in the context of the

application. Therefore, the correct application relies

on the implementation of CSP secure pipes, CSP

container-managed security, and CSP credential

tokenizers. CSP container-managed security was

achieved using Apache Tomcat capabilities. It was

not possible to invoke WSP services without the

WSC credentials that Tomcat requires to allow

WSP services. The CSP credential tokenizer was

implemented using the Apache CXF framework,

which included WSC credentials in a SOAP/REST

service invocation. Information was encrypted

using CSP secure pipes, which were tested, as we

previously mentioned. Therefore, point-to-point

secure invocation of WSPs was achieved in our

application using properly configured Apache

Tomcat, X.509 certificates and Apache CXF, as we

confirmed with testing.

 End-to-end secure service invocation of WSP. No

CSP pattern is defined for this issue, so we used

WS-Security to implement end-to-end secure

invocation. The implementation of WS-Security is

a complex issue, as Section 4.4 and Figure 15

describe. Any failure in the configuration described

in Figure 15 generated a deluge of exceptions in the

application. The implementation of WS-Security

relies heavily on Apache WSS4J interceptors. In

this case, it was possible to see how outgoing and

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

40

incoming SOAP messages were encrypted by these

interceptors. We did not check the encryption made

by the WSS4J interceptors because we trust

Apache’s implementations. Therefore, end-to-end

secure invocation of WSPs was achieved in our

application using properly configured Apache

Tomcat, X.509 certificates and Apache WSS4J

interceptors, as we confirmed with testing.

 Code injection in WSCs. The CSP intercepting

validator was implemented using servlet filters. We

checked that incoming requests to the WSC

application were intercepted and processed by the

servlet filters. Therefore, the detection of code

injection in the WSC was achieved in our

application using properly configured Apache

Tomcat, as we confirmed with testing.

 Code injection in WSPs. Apache Tomcat played the

role of CSP MIG, and CSP MIs were implemented

using Apache CXF interceptors. The validations

made are similar to those made to avoid code

injection attacks in the WSC. Therefore, the

detection of code injection in the WSP was

achieved in our application using properly

configured Apache Tomcat and Apache CXF, as we

confirmed with testing.

 Logging every tier. CSP secure logger, CSP secure

base action, CSP policy delegate, CSP secure

service proxy, and CSP audit interceptor had to be

implemented to make logs in every audited

component of the SOA application. The CSP secure

logger was implemented using MySQL accessed

via HTTPS connections. Thus, the validations made

were similar to those made with CSP secure pipes.

With regard to the logging of the audited

components, they were easily validated as logs were

created as the requests passed through the different

components. Therefore, logging on every tier was

achieved in our application using properly

configured MySQL, X.509 certificates, JSF, and

Apache CXF, as we confirmed with testing.

 Controlling objects deployed in the server. CSP

dynamic service management was implemented

using JMX. Validations checked that monitored

elements were properly controlled using JMX. CSP

secure pipe (SSL connection) was tested as in the

rest of the cases. Therefore, the control of objects

deployed in the server was achieved in our

application using properly configured Apache

Tomcat, X.509 certificates, and JMX, as we

confirmed with testing.

 Secure invocation of WSP using SSO. The CSP

secure message router is a WSC coordinator

responsible for the invocation of different WSPs,

which delegates the SSO capabilities in the CSP

SSO delegator. The implementation of the CSP

SSO delegator was made using Apache CXF and

Talend’s STS. The configuration of Talend’s STS

is a very complex process, as Figure 22 shows. We

checked that SAML assertions were requested by

the WSC, included by the STS in the SOAP

messages, and validated in the WSP. The CSP

assertion builder was not built by us, because

SAML assertions are automatically included by the

STS and managed by Apache CXF, both in the

WSC and the WSP. The CSP secure pipe was tested

as in the rest of the cases. Therefore, the secure

invocation of WSP using SSO was achieved in our

application using properly configured Apache

Tomcat, X.509 certificates, Apache WSS4

interceptors, and Talend’s STS, as we confirmed

with testing.

 Password synchronizing in several platforms. The

CSP password synchronizer is a simple class that

can be easily tested by checking whether or not

passwords are changed in the respective databases.

The complexity here is to implement it as a CSP

secure message router with a CSP single sign-on

delegator, which we did and tested in our project.

The CSP secure pipe was tested as in the rest of the

cases. Therefore, password synchronization was

achieved in our application using properly

configured Apache Tomcat and Apache CXF, as we

confirmed with testing. This password

synchronization was also secure and SSO, as we

tested (see Secure invocation of WSP using SSO

above).

 Finally, CSP intercepting web agent, obfuscated

transfer, and secure service façade were not

implemented, because they were not useful in our

application. However, the underlying CJP patterns

needed for their implementation (front controller,

transfer object, and session façade) do not involve

any specific security framework and can be easily

implemented and tested.

6. CONCLUSIONS AND FUTURE WORK

The first conclusion of this work is that including

security in a J2EE SOA application is a complex issue

and is beyond what the average programmer is able to

take on. Not only must JAX-WS and JAX-RS be

mastered by programmers, but also all the complex

J2EE security frameworks and standards. Thus, to make

J2EE SOA application architectures secure it is

necessary to master a large number of frameworks that

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

41

are only accessible to elite J2EE architects. This can

explain why there are only two enterprise application

development platforms (i.e. J2EE and Microsoft .NET).

Their implementation requires an enormous effort by the

respective software vendors (i.e. Oracle/Eclipse

Foundation and Microsoft) and their use demands a

significant effort by designers and programmers.

In our opinion, the analysis carried out in Section 4,

and Section 5 makes it easier for architects and

developers to secure J2EE SOA multitier applications.

Although specific technologies are essential to tackle the

security concerns, the CSP patterns provide an

abstraction layer that, to some extent, isolates security

concerns from specific technologies and makes this

paper more abstract than J2EE security books. In

addition, the relationships established between CSP

patterns and multitier patterns make it easier for

multitier architects and developers with little experience

with CSP patterns to include them in SOA multitier

applications. The presence of UML diagrams included

in this paper also helps in this respect.

A significant conclusion of this work is that the CSP

catalogue does not consider a pattern for end-to-end

secure invocation of WSPs. Although in practice, this

issue is closely tied up with WS-Security, an abstract

security pattern could be defined.

In addition, this study demonstrates that, if multitier

architecture patterns are properly applied, security is an

orthogonal aspect for SOA multitier development

because the presence of business delegates in WSCs and

web service brokers in WSPs make it very easy to

include security issues in pre-existing code that must

address security concerns. This is an advantage of

multitier patterns themselves. Of course, the lack of

business delegates and web service brokers would make

it difficult to include security patterns in SOA

applications and to maintain them.

Furthermore, the presence of security frameworks,

configurable with external files, makes it easier to

include security features in existing code. However,

based on our experience, configuring these frameworks

is a complex task, and can therefore make maintenance

difficult if future security-related changes are needed.

Moreover, because the security implementation relies on

these frameworks, the practical implementation of CSP

patterns becomes an issue of framework configuration,

which can be very complex and, in contrast to CSP

abstract patterns, can involve a myriad of low-level

details.

This paper also demonstrates that no J2EE

application servers are needed to deploy secure J2EE

SOA enterprise applications. However, our

implementation is very dependent on inner frameworks

and containers, in particular, on the frameworks used for

web services publication (i.e. Apache CXF) and on the

web container (i.e. Apache Tomcat). From this point of

view, it would be very difficult to change Apache CXF

for another implementation of JAX-WS and JAX-RS,

due to both SOA and security issues. Of course, because

Apache CXF is highly configured by external files, this

change would have low impact on the code, but a high

impact on application deployment. The change from

Apache Tomcat to another web container would have

similar difficulties. Therefore, if being bound to a

specific J2EE application server can be a concern for

secure SOA multitier applications, similar concerns

appear for the underlying technologies for deploying

them without application servers. Consequently,

companies must carefully choose the software providers

on which they will build their SOA and security

infrastructure, since security development is very

dependent on and bound to them. However, the

companies must assume this risk, since the

implementation of these services from scratch would be

extremely expensive and unfeasible.

If we analyze the categories provided by the CSP

catalogue, we can see that logging is a common issue

present in web and business tiers. The web tier patterns

are mainly focused on authentication/authorization

issues and on checking the data arriving at WSCs. The

business tier patterns focus on secure invocation of

WSPs, and message validation. The web service tier

focusses on analyzing messages arriving at WSPs and

on augmenting the authorization/authentication of

WSPs beyond user and password via HTTPS. In

particular, the SMR pattern has been very complex,

involving an SSO delegator. Identity management

patterns are focused on credential management and in

single sign-on (this issue is also closely related to SMR).

Finally, the service provisioning category only has one

pattern focused on password synchronization between

different platforms.

Regarding the tolerance of our application to

security attacks, its strength is directly proportional to

the effectiveness of the CSP patterns and the correctness

of the security frameworks used. Thus, if an attack is not

considered in the pattern catalogue, our application

would be completely vulnerable (excluding those

attacks solved by WS-Security). In the same way, if

Apache’s security frameworks are not properly

implemented, the application’s security can be

compromised. However, the CSP catalogue provides

extensive coverage of all types of attacks to SOA

multitier applications, the industry trusts Apache

frameworks, and our applications have been properly

tested.

Future work should include extending the CSP

catalogue to deal with the issues not yet covered, such

as WS-Security (as this paper considers) or multi-factor

authentication (not considered here).

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

42

Testing the performance of WS-Security vs. simple

HTTPS connections would be very interesting.

Migrating Apache CXF and/or Apache Tomcat to

other frameworks and/or containers, or even the whole

application to one or several J2EE application servers,

would be a very interesting exercise, but it would be

extremely costly. In any case, the CSP patterns would

still be valid, although the underlying deployment-

support files and classes would change significantly.

Finally, comparing the effort for developing .NET

secure SOA applications, as well as the applicability of

CSP patterns to .NET, would be a very interesting area

of research, but it would have an even greater cost than

migrating Apache CXF and/or Apache Tomcat to

another J2EE technology.

REFERENCES

[1] D. Alur, D. Malks, and J. Crupi. Core J2EE

Patterns: Best Practices and Design Strategies.

Second Edition. Upper Saddle River, New Jersey:

Prentice Hall, 2003.

[2] A.K. Alvi, M. Zulkernine, “A Comparative Study

of Software Security Pattern Classifications”, in

Proc. ARES 2012, pp. 582-589, 2012.

[3] P. Anand, J. Ryoo and R. Kazman, “Vulnerability-

Based Security Pattern Categorization in Search of

Missing Patterns”, in Proc. ARES 2014, pp. 476-

483, 2014.

[4] Apache, “Apache CXF. An Open-Source Services

Framework”, https://cxf.apache.org/index.html,

accessed 17th July 2020.

[5] Apache, “Apache Tomcat 9. Realm Configuration

How-To”, https://tomcat.apache.org/tomcat-9.0-

doc/realm-howto.html#JDBCRealm, accessed

17th July 2020.

[6] Apache, “Apache CXF configuration”,

http://cxf.apache.org/docs/configuration.html,

accessed 17th July 2020.

[7] Apache, “Apache CXF. Configuring an endpoint”,

http://cxf.apache.org/docs/jax-ws-

configuration.html, accessed 17th July 2020.

[8] Apache, “Using Apache WSS4J”,

http://ws.apache.org/wss4j/using.html, accessed

17th July 2020.

[9] Apache, “Apache CXF Interceptors and phases”,

https://cxf.apache.org/docs/interceptors.html,

accessed 17th July 2020.

[10] Apache, “Apache Log4j 2”, https://logging.

apache.org/log4j/2.x/, accessed 17th July 2020.

[11] Apache, “Apache code examples of WSS4J classes

for SAML tokens management”,

http://svn.apache.org/viewvc/webservices/wss4j/tr

unk/ws-security-dom/src/test/java/org/apache/

wss4j/dom/saml/SamlTokenTest.java?view=mark

up, accessed 17th July 2020.

[12] A. Bien, “Client-Side HTTP Basic Access

Authentication with JAX-RS 2.0”, http://www.

adam-bien.com/roller/abien/entry/client_side_http

_basic_access, accessed 17th July 2020.

[13] D. Bisson, “What is an SSL/TLS X.509

Certificate?”, https://www.venafi.com/blog/what-

ssltls-x509-certificate, accessed 17th July 2020.

[14] B. Buege, R. Layman and A. Taylor, Hacking

Exposed J2EE & Java. Berkeley, California:

McGraw-Hill/Osborne, 2002.

[15] B. Burke. RESTful Java with JAX-RS 2.0:

Designing and Developing Distributed Web

Services. Second Edition. Sebastopol, California:

O’Reilly, 2013.

[16] F. Buschmann, R. Meunier, H. Rohnert and P.

Sommerlad, Pattern-Oriented Software

Architecture Volume 1: A System of Patterns.

Hoboken, New Jersey: Wiley, 1996.

[17] F. Buschmann, K. Henney and D.C. Schmidt,

Pattern-Oriented Software Architecture Volume 4:

A Pattern Language for Distributed Computing.

Hoboken, New Jersey: Wiley, 2007.

[18] F. Buschmann, K. Henney and D.C. Schmidt,

Pattern Oriented Software Architecture Volume 5:

On Patterns and Pattern Languages. Hoboken,

New Jersey: Wiley 2007.

[19] H. Cervantes, R. Kazman, J. Ryoo and D. Choi and

D. Jang, “Architectural Approaches to Security:

Four Case Studies”, IEEE Computer, vol. 49, no.

11, 2016.

[20] cPanel, “How to Configure MySQL SSL

Connections”, https://documentation.cpanel.net/

display/CKB/How+to+Configure+MySQL+SSL+

Connections, accessed 17th July 2020.

[21] W. Crawford and J. Kaplan, J2EE Design Patterns.

Sebastopol, California: O’Reilly, 2003.

[22] B. Doughan, “MOXy's @XmlInverseReference is

now Truly Bidirectional”, http://blog.bdoughan.

com/2013/03/moxys-xmlinversereference-is-now-

truly.html, accessed 17th July 2020.

[23] T. Erl, SOA Design Patterns. Upper Saddle River,

New Jersey: Prentice Hall, 2009.

[24] E. Fernandez-Buglioni, Security Patterns in

Practice: Designing Secure Architectures Using

https://cxf.apache.org/index.html
https://tomcat.apache.org/tomcat-9.0-doc/realm-howto.html#JDBCRealm
https://tomcat.apache.org/tomcat-9.0-doc/realm-howto.html#JDBCRealm
http://cxf.apache.org/docs/configuration.html
http://cxf.apache.org/docs/jax-ws-configuration.html
http://cxf.apache.org/docs/jax-ws-configuration.html
http://ws.apache.org/wss4j/using.html
https://cxf.apache.org/docs/interceptors.html
https://www.venafi.com/blog/what-ssltls-x509-certificate
https://www.venafi.com/blog/what-ssltls-x509-certificate
https://documentation.cpanel.net/display/CKB/How+to+Configure+MySQL+SSL+Connections
https://documentation.cpanel.net/display/CKB/How+to+Configure+MySQL+SSL+Connections
https://documentation.cpanel.net/display/CKB/How+to+Configure+MySQL+SSL+Connections
http://blog.bdoughan.com/2013/03/moxys-xmlinversereference-is-now-truly.html
http://blog.bdoughan.com/2013/03/moxys-xmlinversereference-is-now-truly.html
http://blog.bdoughan.com/2013/03/moxys-xmlinversereference-is-now-truly.html

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

43

Software Patterns. Hoboken, New Jersey: Wiley,

2013.

[25] M. Fisher, J. Ellis and J. Bruce, JDBC API Tutorial

and Reference. Third Edition. Reading,

Massachusetts: Addison-Wesley Professional,

2003.

[26] M. Fowler, Patterns of Enterprise Application

Architecture. Reading, Massachusetts: Addison-

Wesley Professional, 2002.

[27] E. Gamma, R. Helm, R., Johnson and J. Vlissides,

Design Patterns: Elements of Reusable Object-

Oriented Software. Reading, Massachusetts:

Addison-Wesley Professional, 1994.

[28] D. Geary and C.S. Horstmann, Core JavaServer

Faces. Third Edition. Upper Saddle River, New

Jersey: Prentice Hall, 2010.

[29] M. Hafiz, P. Adamczyk, and R. Johnson, “Growing

a Pattern Language (for Security)”, in Proc.

Onward! 2012, pp 139-158, 2012.

[30] S.T. Halkidis, A. Chatzigeorgiou and G.

Stephanides, “A qualitative analysis of software

security patterns”, Computers and Security, vol.

25, 2006.

[31] M. Hall, L. Brown and Y. Chaikin, Core Servlets

and JavaServer Pages: Advanced Technologies.

Vol. 2. Second Edition. Upper Saddle River, New

Jersey: Prentice Hall, 2007.

[32] M.D. Hansen, SOA Using Java Web Services.

Upper Saddle River, New Jersey: Prentice Hall,

2007.

[33] F. Huertas and A. Navarro, “SOA support to virtual

campus advanced architectures: The VCAA

canonical interfaces”, Computer Standards &

Interfaces, vol. 40, 2015.

[34] Infoworld, “How to configure Tomcat to always

require HTTPS”, https://www.infoworld.com/

article/3304289/how-to-configure-tomcat-to-

always-require-https.html, accessed 17th July

2020.

[35] ITU-T, “X.509 (10/2016)”, https://www.itu.int/

rec/dologin_pub.asp?lang=e&id=T-REC-X.509-

201610-I!!PDF-E&type=items, accessed 17th July

2020.

[36] Java 67, “Difference between trustStore vs

keyStore in Java SSL”, https://www.java67.com/

2012/12/difference-between-truststore-vs.html,

accessed 17th July 2020.

[37] JBoss, “SAML Holder-Of-Key Assertion

Scenario”, https://docs.jboss.org/author/display/

JBWS/SAML+Holder-Of-Key+Assertion+

Scenario, accessed 17th July 2020.

[38] M. Kalin, Java Web Services: Up and Running.

Sebastopol, California: O’Reilly, 2009.

[39] M. Keith and M. Schincariol, Pro JPA 2. New

York City, New York: Apress, 2013.

[40] M. Kircher and P. Jain, Pattern-Oriented Software

Architecture Volume 3: Patterns for Resource

Management. Hoboken, New Jersey: Wiley, 2004.

[41] P.J. Kumar, J2EE Security for Servlets, EJBs, and

Web Services. Upper Saddle River, New Jersey:

Prentice-Hall, 2004.

[42] D. Liyanage, “SAML Subject confirmation

methods: Bearer vs. Holder of Key vs. Sender

Vouches”, http://dulanja.blogspot.com/2013/01/

saml-subject-confirmation-methods.html,

accessed 17th July 2020.

[43] M. Little, J. Maron, and G. Pavlik, Java

Transaction Processing: Design and

Implementation. Upper Saddle River, New Jersey:

Prentice Hall, 2004.

[44] D, “Mandal, D. WS Security Implementation

Using Apache CXF and WSS4J”, https://sites.

google.com/site/ddmwsst/ws-security-impl,

accessed 17th July 2020.

[45] G. Marques, “JAAS authentication in Tomcat

example”, https://www.byteslounge.com/tutorials/

jaas-authentication-in-tomcat-example, accessed

17th July 2020.

[46] G. Marques, “JAAS form based authentication in

Tomcat example”, https://www.byteslounge.com/

tutorials/jaas-form-based-authentication-in-

tomcat-example, accessed 17th July 2020.

[47] G. Marques, “JAAS logout example”,

https://www.byteslounge.com/tutorials/jaas-

logout-example, accessed 17th July 2020.

[48] S. Martín, and E. Romero, “Patrones de seguridad

software en el contexto de la arquitectura

multicapa para la plataforma J2EE”,

https://eprints.ucm.es/56616/, accessed 17th July

2020.

[49] G. Mazza, “Deploying and Using a CXF Security

Token Service (STS)”, https://glenmazza.net/

blog/entry/cxf-sts-tutorial, accessed 17th July

2020.

[50] R. de Miguel, “Atravesando las capas de una

aplicación empresarial: demostrador tecnológico

J2EE”, https://eprints.ucm.es/50215/, accessed

17th July 2020.

http://dulanja.blogspot.com/2013/01/saml-subject-confirmation-methods.html
http://dulanja.blogspot.com/2013/01/saml-subject-confirmation-methods.html
https://sites.google.com/site/ddmwsst/ws-security-impl
https://sites.google.com/site/ddmwsst/ws-security-impl
https://www.byteslounge.com/tutorials/jaas-authentication-in-tomcat-example
https://www.byteslounge.com/tutorials/jaas-authentication-in-tomcat-example
https://www.byteslounge.com/tutorials/jaas-form-based-authentication-in-tomcat-example
https://www.byteslounge.com/tutorials/jaas-form-based-authentication-in-tomcat-example
https://www.byteslounge.com/tutorials/jaas-form-based-authentication-in-tomcat-example
https://www.byteslounge.com/tutorials/jaas-logout-example
https://www.byteslounge.com/tutorials/jaas-logout-example
https://glenmazza.net/blog/entry/cxf-sts-tutorial
https://glenmazza.net/blog/entry/cxf-sts-tutorial
https://eprints.ucm.es/50215/

Open Journal of Web Technologies (OJWT), Volume 7, Issue 1, 2020

44

[51] E.F. Monk and B. Wagner, Concepts in Enterprise

Resource Planning. Fourth edition. Boston,

Massachusetts: Course Technology, 2012.

[52] M. Mythliy, M.L. Valarmathi, C. Anand Deva

Durai and J.A.M. Rexie, “An automation

framework design for secure development”,

Journal of Software: Evolution and Process, vol.

31, no. 10, 2019.

[53] R. Nagappan and R. Williams, “Biometric

Authentication for J2EE Applications”, in Proc.

JavaOne Conference, 2005.

[54] A. Navarro, J. Cristobal, C. Fernández-Chamizo

and A. Fernández-Valmayor, “Architecture of a

multiplatform virtual campus”, Software: Practice

and Experience, vol. 42, 2012.

[55] OASIS, “Service Provisioning Markup 2

Language (SPML) Version 1.0”,

https://www.oasis-open.org/committees/

download.php/4137/os-pstc-spml-core-1.0.pdf,

accessed 17th July 2020.

[56] OASIS, “Web Services Security: SOAP Message

Security 1.1 4 (WS-Security 2004)”,

https://www.oasis-open.org/committees/

download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf, accessed 17th July

2020.

[57] OASIS, “Security Assertion Markup Language

(SAML) V2.0 Technical Overview”,

http://docs.oasis-open.org/security/saml/Post2.0/

sstc-saml-tech-overview-2.0.html, accessed 17th

July 2020.

[58] OASIS, “eXtensible Access Control Markup

Language (XACML) Version 3.0”,

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-

core-spec-os-en.html, accessed 17th July 2020.

[59] Oracle, “Understanding Web Service Security

Concepts”, https://docs.oracle.com/middleware/

1212/owsm/OWSMC/owsm-security-concepts.

htm#OWSMC116, accessed 17th July 2020.

[60] Oracle, “keytool command”, https://docs.oracle.

com/javase/10/tools/keytool.htm#JSWOR-GUID-

5990A2E4-78E3-47B7-AE75-6D1826259549,

accessed 17th July 2020.

[61] Oracle, “JAAS Tutorials”, https://docs.oracle.com/

javase/10/security/jaas-tutorials.htm#JSSEC-

GUID-272DB20A-B590-4B2E-BD60-

7EF9EB54AB5A, accessed 17th July 2020.

[62] Oracle, “Enabling remote JMX with password

authentication and SSL”, https://docs.oracle.com/

javadb/10.10.1.2/adminguide/radminjmxenablepw

dssl.html, accessed 17th July 2020.

[63] W. E. Parra, “Integración de patrones de seguridad

y patrones de diseño J2EE”, https://eprints.

ucm.es/26475/, accessed 17th July 2020.

[64] S.Perry, Java Management Extensions.

Sebastopol, California: O’Reilly, 2002.

[65] M. Pistoia, N. Nagaratnam, L. Koved and A.

Nadalin, A. Enterprise Java Security. Building

Secure J2EE Applications. Reading,

Massachusetts: Addison-Wesley, 2004.

[66] J. Ryoo, R. Kazman and P. Anand, “Architectural

Analysis for Security”, IEEE Security and Privacy

vol. 13, no. 6, 2015.

[67] D. Senarath, “WS-Trust and Security Token

Service (STS)”, https://medium.com/@dinika.15/

ws-trust-and-security-token-service-sts-

fd1c92a5f53c, accessed 17th July 2020.

[68] D. Schmidt, M. Stal, H. Rohnert and F.

Buschmann, Pattern-Oriented Software

Architecture Volume 2: Patterns for Concurrent

and Networked Objects. Hoboken, New Jersey:

Wiley, 2000.

[69] stackoverflow, “HTTP GET with request body”,

https://stackoverflow.com/questions/978061/http-

get-with-request-body, accessed 17th July 2020.

[70] Stackoverflow, “Do we absolutely need a STS for

SAML?”, https://stackoverflow.com/questions/

485084/do-we-absolutely-need-a-sts-for-saml,

accessed 17th July 2020.

[71] C. Steel, R. Nagappan and R. Lai, Core Security

Patterns: Best Practices and Strategies for J2EE,

Web Services, and Identity Management. Upper

Saddle River: Prentice Hall, 2005.

[72] L. Vogel, “Java Logging API – Tutorial”,

https://www.vogella.com/tutorials/Logging/article

.html, accessed 17th July 2020.

[73] O. Wulff, “Configure and deploy CXF 2.5 STS -

Part I Open Source and SOA, ESB and Security”,

http://owulff.blogspot.com/2011/10/configure-

and-deploy-cxf-25-sts-part-i.html, accessed 17th

July 2020.

[74] O. Wulff, “SAML tokens and WS-Trust Security

Token Service (STS)”, http://owulff.blogspot.com/

2012/02/saml-tokens-and-ws-trust-security-

token.html, accessed 17th July 2020.

[75] N. Yoshioka, Washizaki and K.A. Maruyama, “A

survey on security patterns”, Progress in

Informatics, vol. 5, 2008.

https://www.oasis-open.org/committees/download.php/4137/os-pstc-spml-core-1.0.pdf
https://www.oasis-open.org/committees/download.php/4137/os-pstc-spml-core-1.0.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://docs.oracle.com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm#OWSMC116
https://docs.oracle.com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm#OWSMC116
https://docs.oracle.com/middleware/1212/owsm/OWSMC/owsm-security-concepts.htm#OWSMC116
https://docs.oracle.com/javase/10/tools/keytool.htm#JSWOR-GUID-5990A2E4-78E3-47B7-AE75-6D1826259549
https://docs.oracle.com/javase/10/tools/keytool.htm#JSWOR-GUID-5990A2E4-78E3-47B7-AE75-6D1826259549
https://docs.oracle.com/javase/10/tools/keytool.htm#JSWOR-GUID-5990A2E4-78E3-47B7-AE75-6D1826259549
https://docs.oracle.com/javase/10/security/jaas-tutorials.htm#JSSEC-GUID-272DB20A-B590-4B2E-BD60-7EF9EB54AB5A
https://docs.oracle.com/javase/10/security/jaas-tutorials.htm#JSSEC-GUID-272DB20A-B590-4B2E-BD60-7EF9EB54AB5A
https://docs.oracle.com/javase/10/security/jaas-tutorials.htm#JSSEC-GUID-272DB20A-B590-4B2E-BD60-7EF9EB54AB5A
https://docs.oracle.com/javase/10/security/jaas-tutorials.htm#JSSEC-GUID-272DB20A-B590-4B2E-BD60-7EF9EB54AB5A
https://docs.oracle.com/javadb/10.10.1.2/adminguide/radminjmxenablepwdssl.html
https://docs.oracle.com/javadb/10.10.1.2/adminguide/radminjmxenablepwdssl.html
https://docs.oracle.com/javadb/10.10.1.2/adminguide/radminjmxenablepwdssl.html
https://eprints.ucm.es/26475/
https://eprints.ucm.es/26475/
https://medium.com/@dinika.15/ws-trust-and-security-token-service-sts-fd1c92a5f53c
https://medium.com/@dinika.15/ws-trust-and-security-token-service-sts-fd1c92a5f53c
https://medium.com/@dinika.15/ws-trust-and-security-token-service-sts-fd1c92a5f53c
https://stackoverflow.com/questions/978061/http-get-with-request-body
https://stackoverflow.com/questions/978061/http-get-with-request-body
https://stackoverflow.com/questions/485084/do-we-absolutely-need-a-sts-for-saml
https://stackoverflow.com/questions/485084/do-we-absolutely-need-a-sts-for-saml
https://www.vogella.com/tutorials/Logging/article.html
https://www.vogella.com/tutorials/Logging/article.html
http://owulff.blogspot.com/2011/10/configure-and-deploy-cxf-25-sts-part-i.html
http://owulff.blogspot.com/2011/10/configure-and-deploy-cxf-25-sts-part-i.html
http://owulff.blogspot.com/2012/02/saml-tokens-and-ws-trust-security-token.html
http://owulff.blogspot.com/2012/02/saml-tokens-and-ws-trust-security-token.html
http://owulff.blogspot.com/2012/02/saml-tokens-and-ws-trust-security-token.html

A. Navarro et al.: Securing J2EE SOA Enterprise Applications with a Pattern-Based Approach

45

AUTHOR BIOGRAPHIES

Antonio Navarro obtained his

PhD in Mathematics-Computer

Science from Universidad

Complutense de Madrid, Spain,

in 2002. He is associate

professor in the Software

Engineering and Artificial

Intelligence Department of

Universidad Complutense de

Madrid. His research interests include software

engineering, software architectures, software design

patterns, software modelling, and model-driven

architecture. He is the author and coauthor of several

papers related to these research topics.

Wilmer Eduardo Parra
obtained his university degree in

Computer Science from

Universidad Industrial de

Santander, Colombia, in 2007,

were he worked with the

Calumet group. He obtained his MSc in Computer

Science from Universidad Complutense de Madrid,

Spain, in 2014, and his MSc in Big Data and Data

Science from Universidad Autónoma de Madrid, Spain,

in 2017. He has worked in different projects in public

and private companies such as Renfe, ADIF and El

Corte Inglés. Currently he is working at the Spanish

bank BBVA. His research interests include software

engineering, big data, data science, and IT and digital

transformation.

Eduardo Romero obtained his

Certificate of Higher Education

in Network System

Administrator from IES

Valdehierro, Spain, and his

university degree in Software

Engineering from Universidad

Complutense de Madrid, Spain,

in 2019. Currently he is working

at GMV as service developer for

the Galileo Project from European Space Agency. His

research interests include UI/UX, web services, system

administration, and web applications security.

Sergio Martin obtained his

university degree in Electronic

Engineering and Industrial

Automation from Universidad

de Alcalá, Spain, and his

university degree in Software

Engineering from Universidad

Complutense de Madrid, Spain, in 2019. His research

interests include software modelling, artificial

intelligence for stock trading, big data and web

applications.

Rodrigo de Miguel obtained his

university degree in Software

Engineering from Universidad

Complutense de Madrid, Spain,

in 2018. We is co-founder of the

web pet shelter Adopta un

Animal https://www.adopta-un-

animal.es/. His research

interests include big data and

real-time processing.

